
Int. J. S"lid.' Slr/Kltlr..' Vol. 21. No. 10. pp. 100~-I024. 198~

Prinled in Greal Brilain.
002()'168318~ 53.00+.00

(J 198~ Perllllmon Prcss Ltd.

ON PLATE THEORIES AND SAINT-VENANT'S
PRINCIPLE

R. D. GREGORY
Department of Mathematics. University of Manchester, Manchester, M13 9PL. England

and

F. Y. M. WANt
Applied Mathematics Program. FS-20. University of Washington, Seattle. WA 98195,

U.S.A.

(Received 4 January 1984; in revised form 16 October 1984)

Abstract-It is gener.llly known that the classical Germain-KirchhofTplatc theory is the leading
term of the outer (asymptotic expansion or interior) solution in a small thickness parameter for
the linear elastostatics of thin. flat, isotropic bodies. This leading term (or the actual) outer
solution alone cannot satisfy arbitrarily prescribed admissible edge-data. On the other hand,
the complementary inner (asymptotic expansion or boundary layer) solution is determined by
a sequence of boundary value problems which are nearly as difficult to solve as the original
problem. For stress edge-data, Saint-Venant's principle has been invoked to generate a set of
stress boundary conditions for the classical plate theory as well as for higher order terms in
the outer expansion (givins various thick plate theories) without any reference to the inner
solution. Attempts to derive the correspondins boundary conditions for displacement and other
types of edge-data in the literature for general shape plates have not been successful.

The present study applies a aeneral method developed by the authors to derive the correct
set of boundary conditions for arbitrarily prescribed admissible edge-data (without an explicit
solution of the inner (or boundary layer) solution) for a number of special cases of general
interest. including cases with displacement edge-data. Our general results also show that. to
be strictly correct. Saint-Venan!'s principle should be applied only to the leading term outer
solution. i.e. the classical plate theory.

1. INTRODUCTION

The classical Germain-Kirchhoff theory of thin elastic plates[l-3] is known to be the
leading term of an interior (or outer asymptotic) expansion in powers of a small
thickness parameter for the linear elastostatics of thin, flat, isotropic bodies[4-7].
Neither this leading term nor the full interior solution alone can fit arbitrarily prescribed
data along the edge of the plate. For stress edge-data, Saint-Venant's principle has
frequently been invoked (e.g. [3], [8], [9]) to generate a set of stress boundary conditions
for classical plate theory and for higher-order terms* in the interior'solution, without
any reference to the complementary edge zone (or inner asymptotic expansion) solu
tion. Previous attempts in the literature to derive the corresponding boundary condi
tions for displacement edge-data have not been successful (e.g. [9]; see also discussion
and other references in [10]).

By a novel application of the Betti-Rayleigh reciprocal theorem, the present au
thors have derived a correct set of boundary conditions for the classical and higher
order plate theories for any admissible set of edge data. The special case of a semi
infinite plate in a state of plane strain, induced by edgewise uniform data, has been
worked out in [10]. In this case, the stress and displacement fields generated by our
boundary conditions differed from the corresponding exact solutions by, only expo
nentially small terms away from the plate edge. The stress boundary conditions obtained

t F. Y. M. Wan is on leave from the University of British Columbia.*As we shall see. this use ofSaint-Venant's principle gives the higher-order terms incorrectly. in general.
and will. therefore. lead to incorrect solutions for thick plates. However. it is correct for the classical thin
plate theory for certain classes of problems. as found in (4). (10). and herein.
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in [10] rigorously justify the application of Saint-Venant's principle for that class of
problems. More importantly, correct boundary conditions for plates with displacement
and mixed edge-data were obtained for the first time in [10]. Our method of solution
also showed that the only previous general results[9] for displacement edge-data arc
incorrect.

In the present study, we obtain similar results for more general edge-data and
plate geometries. The case of axi-symmetric bending of a circular plate is first treated.
The analysis shows that indiscriminate use of Saint-Venant's principle for plates (see
[3] and [8] for examples) may lead to quantitatively and qualitatively incorrect solutions
for the plate behaviour, even in the interior of the plate. In particular, the estimated
level of stress and displacement may be low by orders of magnitude. The results
obtained here actually delimit the range of applicability of Saint-Venant's principle for
axi-symmetric bending.

The results for axi-symmetric bending of circular plates are obtained essentially
by the same technique used for semi-infinite plates in a state of plane strain. The
necessary conditions, deduced from the reciprocal theorem, for the edge-data to induce
only a decaying elastostatic state are directly translated into appropriate boundary
conditions for the plate. Once a suitable (elementary) regular state is constructed for
the relevant edge-data, the translation is immediate because the plate solutions for
the two classes of problems vary only in one spatial direction. This is not the situation
for general edge-data. Appropriate boundary conditions which vary along the plate
edge will have to be deduced from the surface integral(s) associated with the reciprocal
theorem. The general method for this deduction will be illustrated in this study by way
of a semi-infinite plate extending over the region, x ~ 0, Iy I< oc and Iz Ish with y,
z-dependent edge-data prescribed along the only edge of the plate, x = O.

The plate boundary conditions obtained for the plane strain case in [10] are rig
orously correct in that they have been shown to induce the correct elastostatic state
in the plate interior (except for exponentially small terms). Without the needed com
pleteness and expansion theorems for the relevant eigenfunctions, the boundary con
ditions for plates obtained in this study constitute only necessary conditions for the
corresponding elastostatic state in the plate to be asymptotic to the exact solution away
from the plate edge. However, the results for the semi-infinite plate obtained herein
do reduce to the corresponding results for the plane strain case obtained in [l0].

In an Appendix we apply our theory for the axi-symmetric plate bending to the
particular problem of a circular plate loaded by a uniform pressure on its upper face
and simply supported around its lower edge. We calculate the stresses in the plate
interior to within exponentially small error as h -+ 0; our results show that the existing
'solution' to this problem (e.g., Timoshenko and Goodier[8], p. 351) is not correct
beyond the leading term. The corresponding problem for a point load at the center of
the plate is solved in a separate communicationlll]; once again the existing "solution"
(e.g., Love[3], p. 475) is incorrect beyond the leading term.

Aside from the main results of correct boundary conditions for thin and thick plates
with various types of edge-data, an important conclusion from the present work is that
the stresses in the interior ofthe plate are not in general uniquely determined solely by
the stress resultants and couples acting at the edge of the plate. In the example in
Appendix 2, for instance, two different methods of 'simple support' (which have the
same edge stress resultants) are found to give rise to interior solutions which differ
beyond the leading term. Our work shows how the interior solution may nevertheless
be calculated from a more detailed knowledge of the stresses acting at the edge of the
plate; in particular, these edge stresses will be known exactly for the important case
in which the edge of the plate is free and the loading is applied elsewhere. However,
if the engineering origin of a plate problem is such that only the resultants of the edge
stresses are known (and not their detailed distribution), then only the leading term
interior solution (corresponding to the Germain-Kirchhoff plate theory) can be accu
rately determined in general. Similar remarks apply to the other kinds of boundary
conditions.
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2. DECAYING STATES IN A PLATE OF GENERAL SHAPE

In [10], the authors developed the notion of a decaying state for the particular case
pf the semi-infinite plate x ~ 0, Iy I < 00, Iz I ~ h, which was traction-free on I z I =
h and subject to plane strain deformation independent of y. In this case, an equilibrium
state {u, a} was said to be a decaying state if

u - 0 as x _ + 00, (2.1)

uniformly for I z I~ h. It was further shown that if (2.1) is satisfied then u and C1 must
in fact satisfy the much stronger condition

(2.2)

as x - + 00. uniformly for I z I ~ h. where 13 =? 2.106. [If the deformation was that
of bending (rather than in-plane extension), then 13 =? 3.75.]

We now wish to extend the notion of a decaying state to a plate of general shape.
In this case, the operation of letting x(or y) - 00 does not arise since the plate is of
finite lateral dimensions; instead we must let the plate thickness 2h - 0, whilst holding
the lateral dimensions constant. Figure 1 depicts the flat finite plate of general shape
A and thickness 2h, with Cartesian coordinates taken so that the mid-plane of the plate
is the plane Z = O. The plate is homogeneous, isotropic, and linearly elastic. There are
no body forces and the upper and lower faces of the plate are traction-free. On the
curved edge E of the plate (shaded in Fig. 1) we shall limit ourselves to one of the
following sets of prescribed edge data:

Case (A)

Case (B)

Case (C)

Case (D)

O'nn(X, y, z) = ann(t, z),

O'nt(x, y, z) = un,(t, z),

O'nz(x, y, z) = Unit, Z),

O'nn(X, y, z) = ann(t, Z),

u,(x, y, z) = u,(t, Z),

uz(X, y, z) = uz(t, Z),

Un(X, y, z) = un(t, Z),

O'nt(X, y, z) = ant(t, Z),

O'nz(x, y. z) = anz(t, Z),

Un(X, y, z) = un(t, Z),

u,(x, y, z) = u,(t, Z),

IIz(X, y, z) = uit. z).

(2.3)

(2.4)

(2.5)

(2.6)

1,-,,,,,,

A

E

Fig. 1. The plate.
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In each case, the above relations hold when (x, y, z) lies on the edge E of the plate,
and at each point of the edge the directions of n, t, Z are shown in Fig. 1; in particular,
n is normal to the edge. The symbol t is also used to denote the distance measured
around the edge. The remaining four admissible sets of edge-data, where {ann, an" uz},
{ann, u" anz}, {Un, anI, uz} and {Un, U" anz} are prescribed, respectively, can also be
treated by the method used for the four cases above.

The linear elastostatic boundary value problems corresponding to the edge-data
(A), (B), (C) or (D) each have a solution which is unique except (possibly) for a rigid
body displacement. Consider now in each case a class of such solutions corresponding
to plates of fixed shape A and all (sufficiently small) thicknesses 2h. The prescribed
edge-data may be h dependent; for most practical purposes it is sufficiently general to
allow each component of the edge-data to be a finite sum of terms of the form hUc!>(f,
zlh).

Definition.' The prescribed edge-data is said to give rise to a decaying state within
the plate if a solution {u, a} induced by it satisfies the condition

u, (1 = O(NIt,--y,III,) as It - 0, (2.7)

where M is the maximum modulus of the prescribed edge-data, d is the minimum
distance of the observation point from the edge of the plate, and 'Y is a positive constant.

For linear problems in elastostatics, we may take the maximum modulus M of this
data to be unity with no loss of generality. For the bending of a semi-infinite plate in
plane strain, the value of'Y was found in II 0] to be 3.75 .... ; the same value is found
in the present study for the axi-symmetric bending of a circular plate. However, the
analysis in the present study is not dependent on 'Y taking this or any other special
value.

Definition.' A solution {u, a} is said to be a regular state if the stress and displace
ment fields have at worst an algebraic growth as h - O.

3. NECESSARY CONDITIONS FOR EDGE-DATA TO GIVE RISE TO A DECAYING
STATE

The central step in our method of approach is to seek the answer to the following
question: What conditions must the edge-data (2.3), (2.4), (2.5), or (2.6) satisfy in order
that the resulting solution in the plate should be a decaying state? In the present section,
we show how necessary conditions may be derived. These necessary conditions will
be translated into boundary conditions for plate theories later in Sections 4 to 6. These
boundary conditions completely determine the plate solution except possibly for a rigid
body plate displacement.

For definiteness consider Case (A) in which we have the stress data ann, anI, anz
prescribed on the curved edge and suppose that this data does give rise to the decaying
state {u, a} in the plate. We now apply the elastic reciprocal theorem

(3.1)

where S is the surface of that part of the plate shown in Fig. 2, and n = nA is the unit
outward pointing normal to S. S consists of parts of the upper and lower faces of the
plate, all of the edge E, and an inner boundary E* whose detailed shape is not important,
but whose minimum distance c1 from the edge is positive and independent of h. We
take the state with suffix (1) to be {u, a}, the decaying state arising from the prescribed
data ann, ant, allz ' For the state with suffix (2) we take any equilibrium state regular
inside S which satisfies traction-free conditions on the upper and lower faces of Sand
also traction-free conditions on E. With these choices, the upper and lower faces of S
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E

Fig. 2. The region of the plate to which the reciprocal theorem is applied.

yield no contribution to (3.1), which then reduces to

II)()I}

We note that by taking the suffix (2) state to be traction-free on E, only known com
ponents of the decaying state {u, a} now appear on the left in (3.2).

We now let h - 0 in (3.2). The boundary E* is in the interior of the plate and so
the decaying state {u, a} which satisfies (2.6) is exponentially small on E*. Also without
loss of generality, we may take the maximum modulus of {U(2), a(2)} on E* to be unity.
With this normalisation we see that

where J (independent of h) is the minimum distance of E* from E. The value of the
left side of (3.3) is a known function of h; if this function is a power series in h (and
we shall assume that this is so), then (3.3) implies that it must be the zero function.
Hence we finally obtain

(3.4)

which is a necessary condition that the edge-data ann, ant, anz: should give rise to a
decaying state. 71,e .mJJix (2) S/U/C' uppearillJ: ill (3.4) Illa)' be allY equilibrium s/ate
regular in a neighbourhood of E which is traction-free on the upper and lower face~i

and also traction-free on the edge E. In general, there will be an infinity of such (in
dependent) suffix (2) states; but restrictions of symmetry may reduce this to a finite
number (see Section 4).t

The above derivation of necessary conditions was for Case (A) (Le., pure stress)
edge-data. For cases (B), (C), (D), the derivation follows a similar line, the main
difference being that on E the suffIX (2) state must be chosen to satisfy homogeneous
conditions corresponding to the prescribed data. If this is done then the necessary
conditions for a decaying state are:

Case (B)

for {- (2) - (2) - (2)} dS 0JE UnnUn - u,un, - Uz:Unz: =. (3.5)

t This is assured in the plane strain case[IO] because there the necessary conditions are proved to be
sufficient.

SAS Z1:lo-B
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Case (C)

Case (D)

R. D. GREGORY AND F. Y. M. WAN

(3.6)

(3.7)

4. AXI·SYMMETRIC BENDING OF A CIRCULAR PLATE

The practical difficulty in implementing the preceding process lies in the determi
nation of suitable suffix (2) states which satisfy the appropriate boundary conditions.
However, for the case of a circular plate in axi-symmetric bending, the necessary suffix
(2) states can be explicitly determined, at least for edge-data in Cases (A) and (C). Let
the plate occupy the region r s a, 0 s es 21r, Iz Ish in a system of cylindrical polar
co-ordinates. The assumed axi-symmetry with a( )/ae == 0 and U8 5i 0 implies that CTre

= CTz8 • 0 and that the remaining field components are independent of e.

Case (A)
In this case, we have CT,,(a, z) = a,,(z) and CTrz(a, z) = a,z(Z). The condition for

a decaying state (3.4) reduces to the one-dimensional integral

f
h

- (2) - (2)[CT"U, + CT,zUz ],-a dz = 0,
-h

(4.1)

where a,,(z) and a,z(Z) are the prescribed edge-data.
First, take as the suffix (2) state a rigid body translation in the z-direction. Then

u~) 5i 0 and U~2) = constant so that (3.8) gives

f
ir

a,z dz = O.
-h

(4.2)

This condition for a decaying state is not at all surprising since overall equilibrium of
the plate demands that (4.2) be satisfied.

As a second choice for the suffix (2) state, take the displacement field

a r
U~2) = (l + v) - Z + (l - v) - z,

r a

2 r 1 r vz2

u~) = - (l + v)a log - - - (l - v) - - - ,
a 2 a a

where v is Poisson's ratio. The corresonding values of CT,,, CT'z, CTzz are given by

z ( _ a
2

)CT~~) = 21J.(l - v);; 1 r'

(4.3a)

(4.3b)

(4.4a)

(4.4b)

where IJ. is the shear modulus. It may be verified that (4.3) and (4.4) do define an
equilibrium state in the plate (except at r = 0), which satisfies traction-free conditions
on the faces Iz I = h, and is also traction-free on the edge r = a. The fields are singular
on the axis r = 0, but are certainly regular in a neighbourhood of the edge and so are
admissible as a suffix (2) state in the derivation leading to (3.4).

On substituting (4.3) into (4.1), we obtain, after using (4.2),

(4.5)
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(4.6)

a second necessary condition for a decaying state. The necessary condition (4.5) is
rather unexpected and deserves some discussion. The question of what conditions a
surface load (applied to a portion of the boundary of an elastic body) must satisfy in
order that its effects should 'decay to zero most rapidly' at distances large compared
with the linear dimensions of loaded surface area goes back at least to the 1855 Saint
Venant theory of torsion. Saint-Venant suggested that, in the case of cylinders loaded
at their ends, the condition for most rapid decay is that the resultant force and moment
at each end should be zero. This example of Saint-Venant's principle has since been
proved to be correct, along with many generalizations (see the review article by Horgan
and Knowles[l2]). In the context of the bending of plates by edge tractions, the most
rapid decay possible is exponential decay with respect to distance from the edge as in
(2.7) (see the examples in Section 5). Previous attempts to decide on the conditions
for rapid decay have often relied on the use of unproved extensions of the Saint-Venant
principle. For instance, Timoshenko and Goodier[8] (pp. 351-352), appeal to this prin
ciple and assert (in a problem involving the axi-symmetric bending of a circular plate)
that the conditions for most rapid decay consist of (4.2) and

Jh zarr dz = 0
-h

(instead of (4.5». The same presumption is made by Love[3] in his treatment of thick
plates. We now see that this particular application (or extension) of Saint-Venant's
principle is incorrect. As a particular example, consider the data

arr = 0,

art = P8(z - h) + P8(z + h) - 2P8(z) ,

(4.7a)

(4.7b)

(4.8a)

where 8(z) is the Dirac delta-function.·· This data satisfies (4.2), (4.6) and so, if Saint
Venant's principle were applicable, it would generate a decaying state in the plate.
However, the true condition (4.5) is not satisfied (except for 11 = 0), and so the data
(4.7) do not generate a decaying state in the plate when 11 > 0, and so must instead
generate a non-zero interior solution. By using the method employed in Appendix 2,
this interior solution may be found exactly to be

I 311P z
C1 rr = --;;"h'

(4.8b)

The appearance of the interior stress (4.8) arising from the data (4.7) may be interpreted
as a Poisson's ratio effect.

Because our result (4.5) is in contradiction to that widely used in the literature,
we give, in Section 5, explicit examples of decaying states in a circular plate for which
(4.5) is true, whilst (4.6) is false. The difference between interior solutions associated
with (4.5) and (4.6) for typical physical problems is illustrated in Appendix 2 and [11].
We note here only that, strictly speaking, it is in any case inappropriate to invoke Saint
Venant's principle for the problems of this section. As the surface tractions are dis
tributed (uniformly) around the entire edge of the circular plate, the representative
linear dimension of the loaded area (namely the plate perimeter) is not small compared
with the maximum distance away from the plate edge.

Case (C)
For this case, we have ur(a, z) = ur(z) and C1rt(a, z) = art(z). As in Case (A), we

certainly must have (from U~2) .. 0, U~2) ;;;;; 1)

Jh art dz = O. (4.9)
-h

• Examples involving smooth data can also be constructed. The data (4.7) is chosen because it is easy
to visualise.
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To obtain a second condition. takc the U(~I to be

U~2) = (l - v) (; - arz) ,
r 1 ? Z2

U~2) = (l - v)a log - - - (l - v) - - v - .
a 2 a a

(4. lOa)

(4.10b)

The corresponding stress components are

2J.Lz { a
2

}(J'~;) = -;; (l - v) ? + (l + v) • (4.11a)

(4.llb)

These fields are regular in a neighbourhood of the edge r = a; they are traction-free
on Iz I = h, and, on the edge, satisfy the homgeneous conditions

(r = a). (4.12)

On substituting (4.10), (4.11) into (3.6) we obtain, after using (4.9),

(4.13)

as a second necessary condition for a decaying state when ur and arz are prescribed.
Because (4.13) is independent of the plate radius a, one would expect the same condition
to hold for the semi-infinite plate in plane strain; this is confirmed by Theorem 3 of
(10).

We have not found any simple suffix (2) states suitable for edge-data in Cases (B),
(D), but his does not mean that our approach is useless in these cases. It means that
the required suffix (2) states are themselves the solutions of certain particular boundary
value problems, which, when solved once andfor all, are to be used in the appropriate
decaying state conditions. We used this procedure in [10] to solve problems involving
pure displacement (Case (D» edge-data. For axi-symmetric bending of circular plates
with axi-symmetric displacement edge-data, the same procedure gives the following
two necessary conditions for a decaying state for (2.6):

(Y = B,F) (4.14)

where ~B(r, z) and cr/zB(r, z) may be taken as the stress fields for the boundary value
problem in linear elasto-statistics with the boundary conditions

(4.15)
(B) {r = a: u~B(a, '), = 0,

r- O:~..! - h2? '

while rrl!(r, z) and rrlt(r, z) may be taken as the stress fields for the linear elasto-static
problem with

r = a: u~F(a, z) = 0,

(F) (4.16)

-BF 3a h2 2
\J,z - 4h3r ( - z ).
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The above bending and flexure problems do not depend on the prescribed displacement
edge-data along r = a and, for a fixed hla ratio, may be solved once and for all by
some suitable numerical scheme as the corresponding semi-infinite strip problems for
the plane strain case discussed in [10].

S. EXPLICIT EXAMPLES OF DECAYING STATES TO WHICH SAINT·VENANT'S

PRINCIPLE DOES NOT APPLY

It is possible to represent three-dimensional axi-symmetric elastostatic fields in
terms of a potential <I> satisfying (see Chapter 13 of [8] for example)

(5.1)

where the axis , = 0 of cylindrical polar coordinates has been taken to be the axis of
symmetry of the deformation. In terms of <1>(" z), we have the following expressions
for the nonvanishing stress components:

a rr = [vV2<1> - <I>."1z
azz = [(2 - V)V2<1> - <I>.zzl.z
aee = [VV2<1> - ,-l<1>.r1z

arz = [(1 - V)V2<1> - <I>.zz].r

It is evident that (5.1) has solutions of the form

<I> = [A cos (E~) + Bz sin (E~) ] 10 (E~)

(5.2)

(5.3)

for any E, where I,,(y), n = 0, 1, 2, ... , are modified Bessel functions of the first
kind, i.e.,

(n = 0, I, 2, ...). (5.4)

The class of solutions (5.3) is regular throughout the elastic body and the corresponding
radial stress fields a" are anti-symmetric in z. If we now chose AlB and Eso that art
= au = 0 on z = ±h, we obtain (after normalization) the stress fields

(5.5a)

(5.5b)

a" =
( ')II E-

- £!! cos«() sin (E!) h
E, h 10 (E~)
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(5.5c)

The fields (5.5) are regular in the circular plate r s a, I z Ish and satisfy

arz = azz = 0 (5.6)

on Z = ± h for any choice of ~; they also represent possible equilibrium stress fields
provided that ~ is any root of

sin(2~) = 2~.

In what follows, we will also assume that Ehas a positive real part.
Now it follows from the asymptotic expansion[13]

(5.7)

(5.8)

as Iu 1- 00 (-!'IT < arg u < !'IT) that the fields (5.5) are exponentially small (as h
0) in the interior of the plate, while the stresses on the edge r = a are 0(1); hence the
fields (5.5) are decaying states in the plate, in the sense of Section 2. For these decaying
states we now verify explicitly that the decaying state condition (4.5) is satisfied but
the condition of no resultant moment (4.6) is not satisfied.

From (5.5c) it follows after a little algebra that

(5.9)

Because the right-hand side of(5.9) is not zero, this shows that (4.6) islalse. in general.
Conversely, it is evident that by taking a suitable linear combination of (5.5) and the
"pure bending" field arr = Z, arz = azz = 0, we may obtain a field which does satisfy
(4.6) but is plainly not a decaying state.

On the other hand, we get from (5.5b)

(5.10)

The expressions (5.10) and (5.9) together show that the decaying state condition (4.5)
is satisfied by the decaying stress fields (5.5).

It follows from the above results that applications of Saint-Venant's principle to
plate problems as done in [8] and [3] are generally inappropriate. Two correct necessary
conditions for ensuring a decaying axi-symmetric bending state are (4.2) and (4.5).

6. BOUNDARY CONDITIONS FOR THE INTERIOR SOLUTION OFAXI·
SYMMETRIC BENDING OF A CIRCULAR PLATE

For the circular plate 0 s r S a, Iz Ish with no body force intensities and with
traction-free faces at z = ± h, the outer expansion (in powers of the thickness parameter
hla) ofthe solution of the linear elastostatic problem can be summed to give the interior
solution in a relatively simple form. All stress and displacement components for the
interior solution of the axi-symmetric plate bending problem are given in terms of the
mid-plane transverse deflection w(r) == u~(r. Z = 0) (where a superscript I denotes the
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interior solution) by the expressions recorded in Appendix l. The transverse deflection
itself is the solution of the two-dimensional biharmonic equation V2V2 W = 0 in the
plane z = O.

With Cit == aij(z) - ut(a, z) and uf(z) == Uj(z) - u}(a, z), the necessary conditions
for at and/or uf to induce only a decaying state can be translated into a set of boundary
conditions for the determination of w. For axi-symmetric bending, the edge-data are
uniformly distributed along r = a and this translation is immediate. The resulting plate
boundary conditions for Case (A), (C), and (D) are recorded below for applications to
specific problems.

Case (A)

(6.1)

For this case, the condition (4.2) for a decaying state on ~ gives immediately

-D·~ V 2 w I = fh (1" dz
i)r ,.u -h

while the condition (4.5) gives

(
i)2 W v i)W) I fir {-D - + - - = za" +
i)f2 r i)r '-u -I. [~ h2 - ~ 2] - }d5a 2a z u,z z (6.2)

where use has been made of (6.1) to simplify the expression and where the flexural
rigidity D is given by

(6.3)

As pointed out in Section 4, the condition (6.2) differs from the corresponding condition
obtained from (4.6) which is used in [3] and [8] in an attempt to improve on Kirchhoff
thin plate theory. The significance of this difference when a" ... 0 has already been
demonstrated in Section 4.

Case (C)

For this case, the condition (4.9) implies again (6.1). A second condition follows
from (4.13) to be

i)w I - 3 fh - 1 fh [ 4 + V 2 1 2]-
i)r ,-u - - 2h 3 -h zu, dz + D -h 5(1 _ v) h - 2vz U,z dz

Case (D)

(6.4)

For Y = F, the necessary condition (4.14) for a decaying state becomes

{
. i)w v/~'h2 h3 i)' }

w - hnt i)r + 2(1 _ v) V
2
w + [(2 - v)nf - 6nf] 6(1 _ v) i)r V2 W '-a

= f~h {U!:-F (a, z)u,(z) + ulff (a, Z)uz(Z)} dz (6.5)
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f
ir

. Y _ . BY ~

Wtj - l!crr~ (0, z) d""
-11

kin! = f
ir

. BYz'crrr (a, z) dz.
-II

(6.6)

Similarly, by taking Y = B, we get from (4.14)

{ I
B aw vtfh 2

t"72
- tnl - + v IV +or 2(1 - v)

h
3

0 }[(2 - v)nf - 6nf] - V2 w
6(1 - v) or r=tI

f"= [cr::,B(a, z)iir(Z) + cr!/(a, z)ii~(z)] dz
-II

(6.7)

Not surprisingly, the form of (6.6) and (6.7) is similar to that for the plane strain case
obtained in [10].

In all cases, the conditions derived above (possibly with some sign changes) also
apply at the boundary of an infinite plate with a circular hole as well as at each edge
of an annular disc. Furthermore, with V2V2 W = 0, it is evident that each of the three
sets of two boundary conditions for cases (A), (C), and (D) is sufficient to determine
w(r) in the axi-symmetric plate bending problems for circular discs and annular plates.
Thus, in these cases, the necessary conditions for a decaying state which we have
obtained are sufficient for the determination of the interior solution.

7. SEMI·INFINITE PLATE WITH GENERAL EDGE DATA

Up to now, we have only obtained conditions for a decaying state for special classes
of edge data which are uniformly distributed along the plate edge. For these edge-data,
the conditions for a decaying state may be rewritten in a straightforward manner as
the appropriate boundary conditions for classical and higher order plate theories. For
edge data which are not uniformly distributed, a set of conditions for a decaying state
may again be deduced from the reciprocal theorem of elasticity. Additional analyses
are now required to transform these conditions (in the form of surface integrals over
the cylindrical edge surface) into boundary conditions for plate theories along the edge
curve of the plate. The transformation consists of deriving from the surface integral
conditions a corresponding set of local conditions (involving only integration across
the plate thickness) for points along the edge curve of the midplane of the plate; these
local conditions may then be translated into boundary conditions for plate theories. In
this section, we describe the method for deriving the local necessary conditions for a
decaying state by working out the details for the bending of a semi-infinite plate. The
same method applies to plates of other shapes as well as to plate extension and torsion.

Consider the semi-infinite plate x ;2 0, Iy I < 00, Iz I :s; h, which is traction-free
on its faces Iz I= h, while on the end x =°we have some prescribed "anti-symmetric"
data resulting in a state of plate bending. The special case of edgewise uniform data
leading to an elastostatic state of plane strain has been extensively discussed by Gregory
and Wan[10]. We consider here edge-wise nonuniform data for Cases (B) and (C) for
which simple suffix (2) states may be obtained.

Case B

crxAO, y, z) = (JxAy, z), uy(O, y, z) = uy(y, z), u:;(O, y, z) = u:;(y, z).

First let us suppose that the deformation and the data are proportional to e
iky

,

and that we write in all cases (1ij(Y, z) = O'ij(Z)eik
y and uAy, z) = uAzkky • The

argument leading to the necessary condition (3.5) for a decaying state is almost the
same as in Section 3, except that in the present case the edge E is of infinite extent
and would in general give a nonconvergent integral in (3.5). However, if we choose
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the suffix (2) state to satisfy

O'W(O, y, Z) = U~2)(O, y, Z) = U~2)(O, y, Z) = 0

1017

(7.1)

and also to be proportional to e- iky
• then the argument of section 3 may be applied to

the bounded region 0 :s; x :s; d, Iy I ::; I. Iz I :s; h. The contributions from the faces
y = ± I cancel and we obtain

(7.2)

as a necessary condition for a decaying state, where E. is x = 0, Iy I :s; 1, Iz I :s; h.
However, because of our choice of y-dependences, the integrand in (7.2) is, in fact,
independent of y and so we obtain the condition

f
h

- (2) - (2) - (2)
[O'xxUx - UyO'xy - UzClx: ]x-o dz = O.

-h

Our first choice for the suffix (2) field is

U~2) = -kz cosh(lex)e- ilcy ,

U~2) = ikz sinh(lex)e- ilcy ,

U~2) = sinh(Iex)e - ilcy •

The corresponding values of Clxy , O'x: are

O'W = 2iIJ.k2z cosh(lex)e- ilcy ,

O'~~) = O.

On substituting (7.4), (7.5) into (7.3) we obtain the first condition

f
ir

-h [Z<1xAz) + 2ikIJ.ZUy (z)] dz = 0

or, upon multiplying through by the factor elky
,

I"_II [iiTxx + 2iklJ.ZUy] dz = O.

Our second choice for the suffix (2) field is

-z {U~2) =~ 0 - v) [cosh(lex) + lex sinh(Iex)]

+ (h 2 _ 2 ~ VZ2) 2k2 COSh(Iex)} e-iky

U(2) = _z_ {o - v)ilex cosh(lex)
y 1 - v

+ (h 2 _ 2~ v z2) 2ik2 Sinh(Iex)} e-ilcy

U~2) = {x cosh(lex) + I : v kz2 Sinh(Iex)} e- ilcy.

(7.3)

(7.4a)

(7.4b)

(7.4c)

(7.Sa)

(7.Sb)

(7.6)

(7.7a)

(7.7b)

(7.7c)
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The corresponding values of a.,y. ax: on x = 0 are

(7.8)

(7.9)

On substituting (7.7)-(7.9) into (7.3), we obtain the second condition

(7.10)

after multiplying through by eil
.:)' and using (7.6) to simplify the result.

Since

'k- oUy
I u =-

y oy'

the conditions (7.6) and (7.10) may be written in the form

(7.11)

(7.12)

(7.13)

Now k docs not appear in (7.12) and (7.13) (except in edge data) and so these decaying
state conditions must also apply to any data which is a sum or integral of the ilky type
data considered above. It follows that (7.12) and (7.13) are necessary conditions for a
decaying state for any data of the type (B) which has a Fourier transform in y.

We can determine the interior solution for plate problems corresponding to this
Case (B) data by requiring that the difference between axx , Uy , u~ on x = 0 due to the
interior solution and the data (1x.,·. X.", u~ should satisfy (7.12) and (7.13). If we express
these conditions in terms of w(x y), the transverse midplane displacement, (7.12) gives

while (7.13) gives

I I" [- au,,][V 2 11'1.=1l = - D _II zaxx + 2IJ.z a; dz. (7.14a)

(7.14b)

Appropriate boundary conditions for plate theories of various order may be obtained
from (7.14a) and (7.14b) by retaining terms up to an appropriate power of h on both
sides of these conditions.

For the special case in which axx == uy == u~ iii 0, the conditions (7 .14a) and (7.14b)
reduce to

(7.15)
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which are equivalent to the conditions at a 'freely hinged edge' given in the review
paper of Gol'denveizer (p. 709 of [14]) for Case (B) edge-data. The conditions given
in [14] are approximate (correct to order h) but they coincide with the exact conditions
(7.15) for a straight edge.

Case (C)

u.. (O, y, z) = uAy, z),

The method follows closely that used above for Case (B). First consider those
deformations and data which are proportional to eiky

• If we take the suffix (2) state in
(3.6) to be proportional to e- 1ky , then (3.6) reduces to

f
h

- (2) - (2) - (2)
[O'xyuy + O'x~u~ - UxO'xx]x-o dz = 0

-h

as a necessary condition for a decaying state.
Our first choice for the suffix (2) field is

U~2) = - kz sinh(Iex)e -Iky ,

u,?) = ikz cosh(Iex)e -Iky ,

U~2) = cosh(lex)e- 'kY •

The corresponding value of O'xx on x = 0 is

(7.16)

(7.17a)

(7.17b)

(7.17c)

(7.18)

On substituting (7.17) and (7.18) into (7.16), we obtain (after multiplying through by
eiky)

Our second choice for the suffix (2) field is

U~2) = - 1 ~ v {o - v)[sinh(lex) + lex cosh(Iex)]

+ (h2_ 2 ~ V (2) 2k2Sinh(Iex)} e-1ky,

U(2) = _z_ {o - v)ilex sinh(lex)
y 1 - v

+ (h2_ 2 ~ V (2) 2ik2COSh(Iex)} e-1ky,

U~2) = {x sinh(lex) + _v_ z2k COSh(Iex)} e- 1ky .
1 - v

The corresponding value of O'xx on x = 0 is

2Ez [ ( 2-V)]O'~~(O, y, z) = - 1 _ v2 k + h2
- -6- Z2 k3 e- 1ky .

(7.19)

(7.20a)

(7.20b)

(7.2Oc)

(7.21)



1020 R. D. GREGORY AND F. Y. M. WAN

On substituting (7.20) and (7.21) into (7.16) we obtain (after multiplying through by tiky )

f~/h [4~Z {I + (h 2- 2~ VZ2) k2}U..

+ 2ikz (h 2 - 2 ~ V Z2) aXY + VZ 2axz] dz = O. (7.22)

With k appearing in (7.19) and (7.22) only through iky in the edge-data, these two
conditions may alternatively be written in the form

(7.23)

(7.24)

As before, we may assert that (7.23) and (7.24) are necessary conditions for a decaying
state for any Case (C) data which has a Fourier transform in y.

The conditions (7.23) and (7.24) may be used to derive the conditions which the
interior midplane displacement w(x, y) must satisfy at the edge x = 0 with edge-data
iTw 0=",)', and ii",. The details are omitted and the results are

[ a "2 ] 1 J" [- ao=x)' a
2
iix]- v W = - - Uxz. + Z - - 2~z -2 dz,ax .1-0 D -II ay ay

which follows from (7.23), and

[aw 4 + va] 3 J" { ( 2 - v )- + h2 - V2 w = - - iux - Z h2 - -- Z2
ax 5(1 - v) ax .1-0 2h 3 -h 6

iPux I (h 2 2 - V 2) aCixv v 2 }
X - + - Z - -- z -' + - z 0' dzay2 2~ 6 ay 4~ xz. •

(7.25)

(7.26)

which follows from (7.24). Again, appropriate boundary conditions for plate theories
of various order may be obtained from (7.25) and (7.26) by retaining terms up to an
appropriate power of h on both sides of these conditions.

The above results for Cases (B) and (C) of a semi-infinite plate in bending illustrate
the general method for deriving local necessary conditions (along a generator of the
cylindrical edge of the plate) for a decaying state and therewith appropriate boundary
conditions for plate theories.

Since w must satisfy the equation V4 w = 0, it is evident that conditions of the
type (7.14) and (7.15) or (7.25) and (7.26) uniquely determine w (possibly only up to a
rigid body displacement). Thus the necessary conditions for a decaying state are suf
ficient for the determination of the interior solution.

Note on the Kirchhoff contracted boundary condition
If only terms of leading order (as h - 0) are retained in (7.26), we obtain the

approximate condition

[aw] 3 fit- = - -3 iux dz.ax .1=0 2h-It
(7.27)



On plate theories and Saint·Venant's principle 1021

If we now eliminate Ux from (7.25). (7.27) we obtain

[
0 o3

W
] J" { ocr ,}-D -V 2 11' + (I - v)--, = cr.r: + z~ dz.ax oxay x -0 -" (I)'

(7.28)

which is the well-known Kirchhoff contracted boundury condition of thin plate theory.
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APPENDIX I. INTERIOR SOLUTION FOR PLATES WITH TRACTION·FREE FACES

(\.4)

(1.5)

(\.6)

(1.3)

(1.2)

(I. \)

The parametric series representation (in powers of a thickness parameter) of the interior solution for plate
bending has been obtained by Friedrichs and Dressler[4] and Gol'denveizer and Kolos(7). For the case in
which the plate is free of body force intensities and its faces Iz I = h are traction-free. their results are
summarized by Gregory and WanllO), Section 6. In this case the series may be summed to give

u~ = z_ ~ [0 _v) + (h 2 _ 2- V 1,2) V2] w,o - v) ax 6

u~ = [I + __v_ 1,2V2] w,
2(1 - v)

CT.~.t = -~ [.!. + v.!. + .!. (h 2
- ~ 1,2) V2] I\'

1-v2 ax2 ay2 ax2 6 '

CT"" = -~~ [0 - v) + (h 2 - 2- V 1,2) V2
] w,

l-v2 axay 6

_I E (h2 2) a V2
!TX. = - 2(1 _ v2) - 1, a; w,

cr'u = 0,

where w(x, y) satisfies

(1.7)
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v2 being the two-dimensional Laplacian. The formulae for u~.• of,., a.~l are obtained from u~. a~... a~l by
interchanging x and y.

In cylindrical coordinates (Al.1-AI.6) become

(1.8)

(1.9)

(1.10)

(1.1 \)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

The formulae have also been obtained in a different manner by Lur'e[I5), and more recently by Cheng[16).

APPENDIX II. A CIRCULAR PLATE UNDER UNIFORM PRESSURE ON ITS UPPER
FACE AND SIMPLY SUPPORTED AT ITS LOWER EDGE

With the loading and support of the plate as shown in Fig. (3), we may regard the support as supplying a
uniform vertical line load around the lower edle ofthe very short circular cylinder.t For the plate (or cylinder)
to be in overall equilibrium, this line load must have magnitude tpa per unit length where a is the radius of
the circular plate, and p is the uniform pressure at the top face. Thus, the relevant elastostatic boundary
value problem is one of prescribed surface tractions.

We first consider the bending part of the problem. If we subtract away the particular stress fields

a P = ...£!... [-4(2 + V)·2 + 3(3 + v)r + 12h2).
rr 32h) ..

p _ 3pr 2 _ 2
arz - 8h 3 (h z ),

P pz (2 3h2)au = 4h3 Z - ,

(II.la)

(Il.lb)

(II. Ie)

which satisfy l7u (r, :th) = +w. a'l(r. :th) = 0, then the residual bending problem involves only edge

p

Fig. 3. The circular plate under uniform pressure p and simply supported around its lower edge.

t It is important to specify the precise nature of the support; as the example will show, other forms of
'simple support' do not lead to the same solution even in the interior of the plate.
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tractions and is of the type treated in Section 3, Case (A). The prescribed edge-data is

- pz 2 '211,,{z) = 32h 3 [4{2 + II)Z - 3{3 + lI)a" - 1211 ].

- 3pa 2 2
11,,{z) = 811 3 (z - h ) + lpa[&{z - h) + &(z + h)],

IO::!3

(l1.2a)

(l1.2b)

where the Dirac &-functions in (II.2b) arise from the supporting line load.
We are not able to find the elastostatic field in the plate which fits the edge-data (l1.2) exactly. However,

in the spirit of plate theory, we will determine the interior solution {II, a'l, which differs from the exact
solution only by a decaying state; this difference is thus exponentially small as II - 0 in any interior region
of the plate. For the case in which the plate is traction-free on its faces Iz I = h, this interior solution has
a simple form which is characterised by the single function w{x, y), the transverse deflection of the midplane
of the plate. All the field quantities are simply derived from w, the formulae being given for reference in
Appendix I.

Taking into account the axi-symmetry and the fact that this interior solution must be regular throughout
the plate, it follows from (1.7-I.I6) that lI'(r, 8) (apart from a rigid body translation in the zdirection which
does not affect the stress fields) must be proportional to r2 and that the interior stresses must have the form

a!. = Kz,

<r.. = cr.. = 0,

(1I.3a)

(1I.3b)

where K is a constant to be determined. We determine K by requiring that the difference between the
prescribed edge-tractions (II.2) and those generated from (11.3) should give rise to a decaying state in the
plate; in particular the necessary conditions (4.2) and (4.S) must be satisfied by a"{z) - a!.{u, z) and a,,{z)
- cr..{a, z). In fact (4.2) is satisfied identically and (4.S) determines the value of K to be

p [ H ]K = - -- 3(3 + lI)a2 + - (I + v)h2
32h 3 5 .

{II A)

If we now substitute (11.4) into (l1.3) and then add on the stress fields (11.1), we obtain the full interior solution
to the bending part of our problem

cr., = 3~~3 [ - 3(3 + v){a2 - r) + 1
5
2 {2 - 311)11 2 - 4{2 + v)z:2] ,

I 3pr 2 2
art = 8h 3 (II - z ),

--l pZ 2 3/2
IT:: = 4h 3 (Z - I).

(ll.5a)

(ll.5b)

(ll.5c)

The stress fields (II.S) differ from the exact bending part only by a decaying state.
We now need to find the interior solution of the plate extension part of the problem. In this case, if we

subtract away the particular stress fields

a~r = a~:. = 0, (1I.6a)

(l1.6b)

then we are left with the residual problem with traction-free conditions on the faces z = : h, together with
the edge-data

a"{z) = 0,

a,,{z) = lpa[ -o{z - h) + O{z + h)].

The interior solution of this residual problem must have the form

af,. = T,

(II.7a)

(l1.7b)

(II.8a)

(l1.8b)

where T is a constant be determined. T is determined by requiring that the difference between the prescribed
edge-traction (II.7) and those generated by (II.8) should give rise to a decaying state in the plate. The condition
for a decaying state in the in-plane extension case is derived in [II) to be

If we now substitute a1, - a" - a!.., a~ - a" - 11~: into (11.9), T is found to be

T = 1lip.

(11.9)

(11.10)
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It follows from (11.6). (11.8). m.lO) thai the inlerior solUlion of the plale eXlension part of our problem is
given by

U:r = !vp.

(J~: = O.

m.lla)

(1I.llb)

m,llc)

(11.12)

The compieIe interior slress field in our problem is Ihe sum of (lI.S) and (11.11). In particular. then the 10lal
value of~ is given by

U~ =3:h3 [ - 3(3 + v)(a2
- r)z + I; (2 - JII)h2z - 4(2 + lilt + 3Vh3

] ,

which differs from the expression obtained by Timoshenko and Goodierl81. p. 3SI. As h - 0 both (11.12)
and the expression in [3] have as their leading term

(II. 13)

which is the value predicted by classical Kirchhoffplate theory. However, we see that. apart from the leading
term (H.13), the expression in [3] is not correct; the reason for this is the use of the incorrect decay condition
(4.6) instead of the correct condition (4.5). Thus application of Sainl-Venant's principle to Ihis problem gives
the correct leading term interior solution; the difference from the exact solution is only of higher order in
hla and not exponentially small as one would hope or (erroneously) expect.

We note also that the precise method of support employed has an important influence. even on the
interior solution. If the plate were supported by a vertical line load around its upp~r edge (rather than around
its lower edge as before), then the bending part of the interior solution would be unaltered. but the symmetric
part would become

U~r = -ivp,

lT~z = 0,

u~: = -iP.

(11.I4a)

(1l.14b)

(II.14c:)

and (11.12) would be replaced by

er". = 3:h 3 [ - 3(3 + v)(a2
- r)z + 1; (2 - 3v)h 2z - 4(2 + vIZ) - 8Vh)] . (IUS)

The difference between these two interior solutions is not exponentially small as we might expect. though
it is of higher order in hla.


